Reversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor

نویسندگان

  • Yogesh K. Chutake
  • Christina C. Lam
  • Whitney N. Costello
  • Michael P. Anderson
  • Sanjay I. Bidichandani
چکیده

Friedreich ataxia, the most prevalent inherited ataxia, is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. Repressive chromatin spreads from the expanded GAA triplet-repeat sequence to cause epigenetic silencing of the FXN promoter via altered nucleosomal positioning and reduced chromatin accessibility. Indeed, deficient transcriptional initiation is the predominant cause of transcriptional deficiency in Friedreich ataxia. Treatment with 109, a class I histone deacetylase (HDAC) inhibitor, resulted in increased level of FXN transcript both upstream and downstream of the expanded GAA triplet-repeat sequence, without any change in transcript stability, suggesting that it acts via improvement of transcriptional initiation. Quantitative analysis of transcriptional initiation via metabolic labeling of nascent transcripts in patient-derived cells revealed a >3-fold increase (P < 0.05) in FXN promoter function. A concomitant 3-fold improvement (P < 0.001) in FXN promoter structure and chromatin accessibility was observed via Nucleosome Occupancy and Methylome Sequencing, a high-resolution in vivo footprint assay for detecting nucleosome occupancy in individual chromatin fibers. No such improvement in FXN promoter function or structure was observed upon treatment with a chemically-related inactive compound (966). Thus epigenetic promoter silencing in Friedreich ataxia is reversible, and the results implicate class I HDACs in repeat-mediated promoter silencing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigenetic Silencing in Friedreich Ataxia Is Associated with Depletion of CTCF (CCCTC-Binding Factor) and Antisense Transcription

BACKGROUND Over 15 inherited diseases are caused by expansion of triplet-repeats. Friedreich ataxia (FRDA) patients are homozygous for an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. The expanded GAA triplet-repeat results in deficiency of FXN gene transcription, which is reversed via administration of histone deacetylase inhibitors indicating that transcriptional silencing...

متن کامل

Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science

Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...

متن کامل

Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia.

Expansion of GAA x TTC triplets within an intron in FXN (the gene encoding frataxin) leads to transcription silencing, forming the molecular basis for the neurodegenerative disease Friedreich's ataxia. Gene silencing at expanded FXN alleles is accompanied by hypoacetylation of histones H3 and H4 and trimethylation of histone H3 at Lys9, observations that are consistent with a heterochromatin-me...

متن کامل

Long intronic GAA•TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia

Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii)...

متن کامل

Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma

Merkel cell carcinoma (MCC) is a virally associated cancer characterized by its aggressive behavior and strong immunogenicity. Both viral infection and malignant transformation induce expression of MHC class I chain-related protein (MIC) A and B, which signal stress to cells of the immune system via Natural Killer group 2D (NKG2D) resulting in elimination of target cells. However, despite trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016